
Cisco > Inside Cisco IOS Software Architecture > 4. Early Cbus Routers > Packet Switching with the Cbus See All Titles

Packet Switching with the Cbus 

Recall the descriptions of fast switching and process switching from Chapter 2, "Packet Switching 
Architecture." In both of these methods, the receiving interface hardware copies the received packet into 
I/O memory and interrupts the main processor to begin switching the packet. Whether during the interrupt or 
in a background process, the main processor has to do all the work of actually switching the packet; the 
interface hardware just receives the packet and transmits it to the media. Also, packet switching is just one 
of the many tasks the main processor has to do, so not all of its capacity is available for packet switching. 

The Cbus and the Cbus Controller provided another processing alternative on the AGS+. Instead of IOS 
performing all the switching on the main processor, much of the switching could be performed by the Cbus 
Controller without involving the main processor at all. The Cbus Controller was capable of performing fast 
switching autonomously on the switching processor as long as both the receiving and the transmitting 
interfaces were on Cbus cards. This capability provided a new method of switching appropriately called 
autonomous switching. 

Autonomous Switching 

Autonomous switching worked essentially like fast switching—except on a different processor. It was 
triggered by a packet receive interrupt (this time to the switching processor) and used a local cache to look 
up forwarding information, just like fast switching. In fact, autonomous switching used the same hash table 
structure for its fast cache that IOS used prior to release 10.2. IOS maintained both the main fast cache and 
the local switching processor (Cbus) cache during process switching in the same way. Each time an entry 
was added or invalidated in the main cache it also was added or invalidated in the Cbus cache. 

Autonomous switching did differ from fast switching in a couple ways, though. Autonomous switching didn't 
support as many protocols as fast switching—only IP, IPX, and bridging—and it handled cache misses 
differently. 

Recall that in fast switching, if a packet is received and there is no fast cache entry for it, the packet is 
queued for process switching. In autonomous switching, however, if there was no Cbus cache entry for a 
packet, the packet was sent to the main processor for possible fast switching. If the packet was destined to 
another Cbus interface, the main processor could fast switch the packet while it was still in the Cbus 
Controller. However, if the packet was destined to a Multibus interface, the whole packet had to be copied 
across the slow Multibus to a system buffer, and then process switched. Although the Cbus Controller had a 
Multibus interface, it couldn't use it to autonomously switch packets. 

Cbus Fast Packet Memory 

The Cbus Controller design introduced a new strategy for IOS packet buffering that is still in use today on 
the Cisco 7500 series. On the AGS+, process switching and fast switching used the system buffers for 
packets as described in Chapter 1, "Fundamental IOS Software Architecture." However, these 
system buffers held a distinct disadvantage for autonomous switching: They were located in main memory 
on the main processor card, which made them inaccessible to Cbus interface cards. 

To provide packet buffers for the Cbus interfaces, Cisco designed the Cbus Controller with its own local 
dedicated packet buffer memory. The memory, referred to as MEMD, was a fixed 512 KB region that could 
be addressed by both the switching processor and the Cbus interface cards. Of the total 512 KB available, 
the first 8 KB (called page zero) was set aside for control structures, leaving the rest available to be carved 
into packet buffers. 

NOTE 

You might be wondering where the name MEMD came from. Contrary to popular belief, MEMD is 
not the name of a type of memory but is instead the name Cisco assigned to a class of memory 
used on its Cbus-based routers. MEMD is really just SRAM, but it's always used for packet 

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 3

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=37



 

buffering to and from Cbus interfaces. 

The name MEMD was derived from the word memory (MEM) plus the alphabetic letter D, 
indicating it is the fourth in a series of Cbus memory classes. There were also other Cbus memory 
classes used on the AGS+. For example, MEMA referred to memory used to hold the autonomous 
cache and the global pointers used by the switching processor. 

 
What's most interesting about MEMD is how it was logically organized. Like the system buffers, MEMD was 
divided into buffers of varying sizes to accommodate different sized packets. Unlike the system buffers, 
MEMD buffer sizes were determined by the actual MTU sizes of the Cbus interfaces present on the router—
not by a predetermined set of sizes. 

The buffers were divided into a maximum of four pools, and then they were allocated to the interfaces from 
those pools. Within each pool, all buffers were the same size. Due to the limited size of MEMD and its 
control structures in page zero, the maximum number of packet buffers that could be defined was limited to 
470 regardless of the number of Cbus interfaces present. 

The switching processor maintained two queues in MEMD's page zero for each Cbus interface: a receive 
queue and a transmit queue. These queues were similar in function to the input queues and the output 
queues maintained by IOS. When a Cbus interface detected an incoming packet, it allocated a MEMD buffer 
from the appropriate pool, copied the packet data into the buffer, and placed the buffer on its receive queue 
to await switching by the switching processor. If the packet was autonomously switched, the switching 
processor switched it and placed the modified packet on the transmit queue of the destination Cbus 
interface. If the packet was fast switched, the main processor switched it and directed the switching 
processor to place it on the appropriate Cbus transmit queue. For packets that had to be process switched, 
the switching processor copied the packet to the main processor memory over the Multibus and returned the 
MEMD buffer to its original pool. 

The switching processor also maintained counters and limit values in MEMD for each of the receive queues 
and the transmit queues. Each receive queue had a receive queue limit (RQL) and each transmit queue had 
a transmit queue limit (TQL) to prevent a single interface from hoarding all the MEMD buffers. 

The RQL value determined the maximum number of packet buffers that could be held on the receive queue 
at any time. When a receive queue contained the RQL number of buffers, it was considered full and any 
additional packets received were dropped until the number of buffers dropped below the RQL level. 
Similarly, the TQL value determined the maximum number of packet buffers that could be held on the 
transmit queue at any given time. Any additional packets switched to an interface while its transmit queue 
was full were dropped until its transmit queue depth dropped below the TQL value. 

You can find a more detailed description of the MEMD counters and the buffer carving process in Chapter 
6, "Cisco 7500 Routers." 

 

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section 

autonomous switching 
      Cbus 
buses 

Page 2 of 3

12.04.2002



     Cbus 
            autonomous switching 2nd 
            Fast Packet Memory 2nd 3rd 
Cbus 
      packet switching 
            autonomous 
            Fast Packet Memory 2nd 3rd 
counters 
     MEMD 
            (memory D) 
Fast Packet Memory 
      Cbus 2nd 3rd 
MEMD 
      (memory D) 2nd 
packet switching 
      Cbus 
            autonomous switching 
            Fast Packet Memory 2nd 3rd 
queues 
     MEMD 
            (memory D) 
receive queue 
     MEMD 
            (memory D) 
receive queue limit (RQL) 
     MEMD 
            (memory D) 
RQL (receive queue limit) 
     MEMD 
            (memory D) 
switching packets 
      Cbus 
            autonomous switching 
            Fast Packet Memory 2nd 3rd 
TQL 
     MEMD 
            (memory D) 
transmit queue limit (TQL) 
     MEMD 
            (memory D) 
 

 
 

About Us |  Advertise On InformIT |  Contact Us |  Legal Notice |  Privacy Policy  
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

 

Page 3 of 3

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=37


